18 research outputs found

    Electron Diffraction

    Get PDF
    Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated

    Transmission Electron Microscopy of Nanomaterials

    Get PDF
    Structural and analytical characterization, in the nanometer scale, has become very important for all types of materials in recent years. Transmission electron microscope (TEM) is a perfect instrument for this purpose, which is summarized in this chapter. Parameters such as particle size, grain size, lattice type, morphological information, crystallographic details, chemical composition, phase-type, and distribution can be obtained by transmission electron micrographs. Electron diffraction patterns of nanomaterials are also used to acquire quantitative information containing size, phase identification, orientation relationship and crystal defects in the lattice structure, etc. In this chapter, typical electron diffraction, high-resolution transmission and scanning transmission electron microscope imaging in materials research, especially in the study of nanoscience are presented

    Kinetics of Austenite Formation in Dual Phase Steels

    No full text

    Long-time irradiation effect on corrosion behavior of aluminum alloy in pool water of low-power research reactor

    No full text
    Abstract This study conducted an evaluation of the corrosion behavior of an aluminum alloy utilized in the Isfahan Miniature Neutron Source Reactor (MNSR). The component analyzed, dry channel (DC), had been exposed to radiation for 12 years in a water environment within the reactor pool since its installation. To determine the effect of radiation on the corrosion of the LT-21 aluminum alloy used in the DC, different parts of the pipe were sampled and various tests were performed. These tests included mechanical strengths (impact, and micro-hardening), XRD, TEM, SEM–EDS, and potentiodynamic polarization (PDP). The parameters measured included corrosion potential, corrosion rate, changes in microscopic structure, and mechanical properties of the aluminum alloy along the entire length of the DC. The neutron and gamma dose distribution along the height of the DC, which was 540 cm, was calculated to determine the correlation between the dose distribution and observed corrosion. The study found that the corrosion mechanisms were complex and resulted from the simultaneous presence of the DC in the pool water and radiation from the reactor core. The observed results are presented and discussed in this study
    corecore